Two dimensional plots
Most examples were adapted from the official pages of Wolfram Language Documentation Center.
The algorithms and implementations of those functions are the intellectual property of Wolfram Research. WLJS Team only reimplemented underlying low-level primitives such as `Line`, `Point`, `Polygon`, and etc.
Download original notebook
Contour Plot
Generates a contour plot of as a function of
ContourPlot[ Cos[x] + Cos[y], {x, 0, 4 Pi}, {y, 0, 4 Pi} ]
(*VB[*)(FrontEndRef["3ca14ac3-7fc1-4e11-bc46-cfa949189d58"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKGycnGpokJhvrmqclG+qapBoa6iYlm5jpJqclWppYGlpYpphaAACMehXU"*)(*]VB*)
Or plot contour lines for which the equation is satisfied
ContourPlot[(*SpB[*)Power[x(*|*),(*|*)2](*]SpB*) - (*SpB[*)Power[y(*|*),(*|*)2](*]SpB*) == (*SpB[*)Power[x(*|*),(*|*)3](*]SpB*), {x, -2, 2}, {y, -2, 2}]
(*VB[*)(FrontEndRef["17562242-ec14-4f0d-a6e4-2105f8af166b"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKG5qbmhkZmRjppiYbmuiapBmk6CaapZroGhkamKZZJKYZmpklAQB1eRU3"*)(*]VB*)
List-version
ListContourPlot[Table[Sin[i + (*SpB[*)Power[j(*|*),(*|*)2](*]SpB*)], {i, 0, 3, 0.2}, {j, 0, 3, 0.2}], ColorFunction -> "SunsetColors"]
(*VB[*)(FrontEndRef["66d6804b-487e-4ea1-84c2-4b7e451a2aa6"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKm5mlmFkYmCTpmliYp+qapCYa6lqYJBvpmiSZp5qYGiYaJSaaAQB8vBVy"*)(*]VB*)
Density Plot
Make a simple styled density plot with a custom color function
CoolColor[ z_ ] := RGBColor[z, 1 - z, 1]; DensityPlot[Sin[x y], {x, -1, 1}, {y, -1, 1}, ColorFunction -> CoolColor]
(*VB[*)(FrontEndRef["b6e46278-d904-447a-9d21-81f85788ca58"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKJ5mlmpgZmVvoplgamOiamJgn6lqmGBnqWhimWZiaW1gkJ5paAAB44xUA"*)(*]VB*)
Parameteric plots
Generate a complex paramteric plot
ParametricPlot[ With[{z = u + I v}, {Re[z + 1/z], Im[z + 1/z]}], {u, -1/2, 1/2}, {v, -1/2, 1/2}, PlotRange -> 5, Mesh -> Automatic]
(*VB[*)(FrontEndRef["c73190c7-fdc4-4bad-b90c-b9a6ed5a1607"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKJ5sbG1oaJJvrpqUkm+iaJCWm6CYB+UAi0Sw1xTTR0MzAHACO+xYt"*)(*]VB*)
Or a simple mesh
ParametricPlot[{r Cos[\[Theta]], r Sin[\[Theta]]}, {r, 1, 2}, {\[Theta], 0, 2 Pi/3}, PlotRange -> All, Mesh -> 15]
(*VB[*)(FrontEndRef["bd006532-1082-422b-864c-4175521dfd27"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKJ6UYGJiZGhvpGhpYGOmaGBkl6VqYmSTrmhiam5oaGaakpRiZAwBvDRSj"*)(*]VB*)
Map a texture to it
texture = Image[CellularAutomaton[30, {{1}, 0}, 40], "Bit", Magnification -> 2] // Texture
Texture[(*VB[*)(FrontEndRef["0e7bf45a-331d-4b95-8c8f-a4577e704c95"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKG6SaJ6WZmCbqGhsbpuiaJFma6lokW6TpJpqYmpunmhuYJFuaAgCF6RWC"*)(*]VB*)]
ParametricPlot[{r Cos[\[Theta]], r Sin[\[Theta]]}, {r, 1, 2}, {\[Theta], 0, 2 Pi/3}, PlotRange -> All, Mesh -> 15, PlotStyle->texture]
(*VB[*)(FrontEndRef["452e93d0-9815-4671-9d02-202f0a70d567"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKm5gapVoapxjoWloYmuqamJkb6lqmGBjpGhkYpRkkmhukmJqZAwBuXBSD"*)(*]VB*)
Complex Plot
Plot directly complex space
ComplexPlot[(*FB[*)(((*SpB[*)Power[z(*|*),(*|*)2](*]SpB*) + 1)(*,*)/(*,*)((*SpB[*)Power[z(*|*),(*|*)2](*]SpB*) - 1))(*]FB*), {z, -2 - 2 I, 2 + 2 I}, PlotLegends -> Automatic]
(*VB[*)(Legended[ToExpression[FrontEndRef["a98903f9-675e-4816-95b3-20ef976fe4b6"], InputForm], BarLegend[{ColorDataFunction["MidShiftBalancedHue", "ThemeGradients", {0, 1}, Blend["MidShiftBalancedHue", #1] & ][#1] & , {0, 1}}, LabelStyle -> {}, LegendLayout -> "Column", LegendMarkerSize -> 225, "ColorFunctionShading" -> None, OpacityFunction -> (1 - Rescale[#1, {0, 0.9}, {0, 1}] & ), "OpacityFunctionTicks" -> {{0, "0"}, {0.9, 4}, {1, "Infinity"}}, "OpacityFunctionSize" -> Scaled[0.5], "OpacityFunctionRange" -> {0, 1}, Charting`TickLabels -> {"-\[Pi]", "-\[Pi]/2", "0", "\[Pi]/2", "\[Pi]"}, Ticks -> {{0., 0.25, 0.5, 0.75, 1.}, {{0, 1/20, 1/10, 3/20, 1/5}, {1/5, 1/4, 3/10, 7/20, 2/5}, {2/5, 9/20, 1/2, 11/20, 3/5}, {3/5, 13/20, 7/10, 3/4, 4/5}, {4/5, 17/20, 9/10, 19/20, 1}}}, Charting`TickSide -> Right, ColorFunctionScaling -> True]])(*,*)(*"1:eJyNVc1y0zAQNknakEKBkr4AM1wzpEmb1r1kpmkKh5QyUYZTDyj2OtFUkRlZHgjPCDM8Atw4cOANQCs3JrITJz7I8v7o+/ZbSX4xDodB2XGcaF8P7xl8ugQvlFSFkuxqywAmIPyghBF7euj7TLswLniAtud6uJKhUH3h9z+DFys65kBeajN1z9xmO3AbndMTaByfHXUa7sm43Wg1IXBPOwEcjzvJwhU9DGOd9hAnQP0bwefGOpIxBMgsqunhgsplPhgwYJFKmGDuVSw8xUJhLAH6owM99EIeykuq6MJP6tp6zXwyZYG6oJwKD/w3MZAniDmFGbyW1GcgVGRDMf12mFk9D2oid5An1xzXYSSJuCDhoVpayzatg7UEMy0Z0DFwouYcAseSxQ59nHZzQOdhrEx7tTLxTGQin6WR11TegSTsC7CfOXByuJA2lXWqRRMTE/E2FJBZ96me3HykHlNzq1ErVMScdzyOlmpGYUdsBhH7q59kz1bNfok8ylfKmtdQfvuKz+/udvqaEjOUR8y7ixL4vNLpYgQXa9qOFJxV8uww3rTk9rzVOupneNTzPLArSdGYRVADXzrm+dHdXMaQiglsucsQvTelUunmfsD6zZaLgp3lbILNaNyeN9u9Jqn9n79qJVqYw52adtOPDFbSZpTYPuMW1n2dup/J63s3rfx+8msx+dO1U+0vU3KCZO4eitJQbkRghwW+vdW+8qY8RM8QKopc46sUoK9hVi1gVtqaWamAWW1T7aXVvkcFeeWtmZULmO0XIFQ3dXON1pWtmVUKmB0UMKsVMKsv8lYdV/PLWz6uhPnJwRqyyTT7X8jf4voqWdzi+P/9B2PNuNc="*)(*]VB*)
Vector plot
Generates a vector plot of the vector field as a function of and
VectorPlot[{x + y, y - x}, {x, -3, 3}, {y, -3, 3}]
(*VB[*)(FrontEndRef["b2aba512-0055-48c1-97ea-e86c8e1cd1f7"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKJxklJiWaGhrpGhiYmuqaWCQb6lqapybqplqYJVukGianGKaZAwCDMBXM"*)(*]VB*)
A list version is also available
ListVectorPlot[Table[{y, -x}, {x, -3, 3, 0.2}, {y, -3, 3, 0.2}]]
(*VB[*)(FrontEndRef["ea79add5-017c-4067-b533-e9d2948cb89f"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKpyaaWyampJjqGhiaJ+uaGJiZ6yaZGhvrplqmGFmaWCQnWVimAQCIEhW1"*)(*]VB*)
Stream plot
Generates a stream plot of the vector field
StreamPlot[{-1 - (*SpB[*)Power[x(*|*),(*|*)2](*]SpB*) + y, 1 + x - (*SpB[*)Power[y(*|*),(*|*)2](*]SpB*)}, {x, -3, 3}, {y, -3, 3}, StreamScale->Large]
(*VB[*)(FrontEndRef["577c61e9-d69f-49d5-a5a1-78f83fb6026f"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKm5qbJ5sZplrqpphZpumaWKaY6iaaJhrqmlukWRinJZkZGJmlAQCBrxWR"*)(*]VB*)
Matrixes & Arrays
Plots a 2D array or matrix
MatrixPlot[ Fourier[Table[ UnitStep[i, 4 - i] UnitStep[j, 7 - j], {i, -7, 7}, {j, -7, 7}]]]
(*VB[*)(FrontEndRef["2d01cdec-03d8-4922-a901-1ed71e1ea2c1"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKG6UYGCanpCbrGhinWOiaWBoZ6SZaGhjqGqammBumGqYmGiUbAgCGExW4"*)(*]VB*)
Another example
MatrixPlot[PauliMatrix[3]]
(*VB[*)(FrontEndRef["490bad61-47c1-46f0-b359-853531993ed7"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKm1gaJCWmmBnqmpgnAwmzNAPdJGNTS10LU2NTY0NLS+PUFHMAebIU7g=="*)(*]VB*)
Array plot
Generates a plot, where values are shown in a discrete array of blocks
ArrayPlot[{{1, 0, 0, Pink}, {1, 1, 0, Pink}, {1, 0, 1, Red}}]
(*VB[*)(FrontEndRef["d40c935a-36b0-4e55-afd9-4033c89cc91c"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKp5gYJFsamybqGpslGeiapJqa6iampVjqmhgYGydbWCYnWxomAwCCMxWj"*)(*]VB*)
Overlay with other graphics
Graphics[{{Red, Disk[{5, 5}, 4]}, Raster[Table[{x, y, x, y}, {x, .1, 1, .1}, {y, .1, 1, .1}]]}]
(*VB[*)(FrontEndRef["8b8dd21a-0df0-4d62-80da-854a15de053b"])(*,*)(*"1:eJxTTMoPSmNkYGAoZgESHvk5KRCeEJBwK8rPK3HNS3GtSE0uLUlMykkNVgEKWyRZpKQYGSbqGqSkGeiapJgZ6VoYpCTqWpiaJBqapqQamBonAQCJhBXD"*)(*]VB*)